Co(1)—O(1)	2.095 (2)	C(2)—C(3)	1.405 (4)
Co(1)O(2)	2.073 (2)	C(3)C(4)	1.369 (5)
Co(1)—O(3)	2.124 (3)	C(4)—C(10)	1.410 (4)
O(1)—N(1)	1.327 (3)	C(5)—C(6)	1.352 (5)
O(2)—N(2)	1.300 (3)	C(5)-C(10)	1.419 (4)
N(1)—N(2)	1.285 (3)	C(6)—C(7)	1.398 (5)
N(1)—C(1)	1.440 (3)	C(7)C(8)	1.368 (4)
C(1) - C(2)	1.358 (4)	C(8)C(9)	1.417 (4)
C(1)C(9)	1.427 (4)	C(9)—C(9)	1.422 (4)
$O(1) - Co(1) - O(1^{i})$	94.6(1)	N(1)C(1)C(9)	119.8 (2)
O(1)—Co(1)—O(2)	74.80 (7)	C(2) - C(1) - C(9)	122.3 (3)
$O(1) - Co(1) - O(2^{i})$	96.80 (8)	C(1) - C(2) - C(3)	120.3 (3)
O(1)-Co(1)-O(3)	152.83 (8)	C(2) - C(3) - C(4)	119.7 (3)
O(1) - Co(1) - O(3')	95.5(1)	C(3) - C(4) - C(10)	121.1 (3)
O(2)—Cv(1)—O(2')	167.8(1)	C(6)-C(5)-C(10)	121.2 (3)
O(2)-Co(1)-O(3)	79.00 (8)	C(5)-C(6)-C(7)	120.3 (3)
O(2) - Co(1) - O(3')	110.18 (9)	C(6) - C(7) - C(8)	121.0 (3)
O(3)-Co(1)-O(3 ⁱ)	86.8 (1)	C(7)—C(8)—C(9)	120.0 (3)
Co(1)-O(1)-N(1)	110.8(1)	C(1)-C(9)-C(8)	124.3 (2)
Co(1)—O(2)—N(2)	117.7 (2)	C(1)-C(9)-C(10)	116.7 (2)
O(1)—N(1)—N(2)	123.3 (2)	C(8) - C(9) - C(10)	119.0 (2)
O(1) - N(1) - C(1)	119.7 (2)	C(4)—C(10)—C(5)	121.5 (3)
N(2) - N(1) - C(1)	116.9 (2)	C(4)-C(10)-C(9)	120.0 (3)
O(2) - N(2) - N(1)	113.5 (2)	C(5)-C(10)-C(9)	118.5 (3)
N(1) - C(1) - C(2)	117.9 (2)		

Table 1. Selected geometric parameters (Å, °)

Symmetry code: (i) -x, y, $\frac{1}{2} - z$.

All H-atom positions were located in a difference Fourier map.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985) and DIRDIF (Beurskens, 1984). Program(s) used to refine structure: TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1101). Services for accessing these data are described at the back of the journal.

References

- Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures – an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
- Ishii, H., Tatsuta, M., Baba, M., Uehara, H. & Nakaizumi, A. (1994). Cancer Res. 54, 3167-3170.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kundu, P. C. & Bera, A. K. (1978). Indian J. Chem. 16A, 865-867.

Kundu, P. C. & Bera, A. K. (1982). Indian J. Chem. 21A, 1132-1134.

- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Nishimura, S., Kasai, H., Fujiki, H., Suganuma, M., Shimotohno, K. & Taya, Y. (1985). In *Hatsugan*. Kyoto, Japan: Kagakudojin. (In Japanese.)
- Okabe, N. & Tamaki, K. (1995a). Acta Cryst. C51, 1295-1297.
- Okabe, N. & Tamaki, K. (1995b). Acta Cryst. C51, 2004-2005.
- Sheldrick, G. M. (1985). SHELX86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved Yoshimura, T., Miyake, C. & Imoto, S. (1972a). Bull. Chem. Soc. Jpn, 45, 1424–1430.

Yoshimura, T., Miyake, C. & Imoto, S. (1972b). Technol. Rep. Osaka Univ. 22, 791-802.

Acta Cryst. (1998). C54, 197-199

Complexe de Cuivre(II) Di(nitriloacétatodiacétique) Dihydrate, [Cu(C₆H₈NO₆)₂].-2H₂O

FATMA BEN AMOR, NÉJI BOURGUIBA, AHMED DRISS ET TAHAR JOUINI

Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisie. E-mail: tahar.jouini@fst.rnu.tn

(Reçu le 27 mai 1997, accepté le 22 août 1997)

Abstract

The structure comprises $[Cu(C_6H_8NO_6)_2]$ complex units and H_2O molecules. Two molecules of the ligand chelate the metal in an octahedral fashion through four O and two N atoms: the four O atoms form the equatorial plane and the two N atoms occupy the apical positions. The complex molecules and the H_2O molecules are connected by $O-H\cdots O$ hydrogen bonds.

Commentaire

Plusieurs études structurales et vibrationnelles portant sur des composés dérivant de l'acide nitrilotriacétique N(CH₂COOH)₃ ont été reportées en bibliographie. On relève notamment dans une étude antérieure (Whitlow, 1973) les complexes de cuivre: [LiCuN(CH₂COO)₃].-3H₂O et [NaCuN(CH₂COO)₃].H₂O. Cette étude a déjà fait allusion à l'existence du complexe [Cu{H₂N(CH₂-COO)₃}₂].2H₂O en se limitant à une détermination photographique des paramètres de la maille et du groupe d'espace. Ce travail est consacré à l'étude structurale par diffraction rayons-X sur un monocristal de [Cu{H₂N-(CH₂COO)₃}₂].2H₂O, (I).

Acta Crystallographica Section C ISSN 0108-2701 © 1998

Fig. 1. Projection ORTEPII (Johnson, 1976) selon la direction [100] du contenu de la maille de [Cu(C₆H₈NO₆)₂].2H₂O. Les ellipsoîdes d'agitation déplacements ont 50% de probabilité d'existence.

La structure est formée de molécules complexes $[Cu{H_2N(CH_2COO)_3}_2]$ et de molécules H₂O libres (Fig. 1). L'ion Cu^{II} est coordiné à deux molécules de ligand $(C_6H_8NO_6)^-$. Chacune d'elle chelate l'ion Cu^{II} au moyen de deux atomes d'oxygène O1 et O2 des groupements respectifs COO⁻ et COOH et à travers l'azote N1. Cu^{II} est ainsi au centre d'un octaèdre: les quatre atomes d'oxygène O1, O1ⁱ, O2 et O2ⁱ formant le plan équatorial, les positions axiales sont occupées par deux atomes d'azote: N1 et N1ⁱ [code de symétrie (i): -x, 1-y, -z]. Les distances moyennes Cu1— O (2,141 Å) et Cu1-N1 (2,059 Å) sont en accord avec celles rencontrées dans des complexes de cuivre (Lumme, Knuuttila & Lindell, 1996). Les molécules du complexe sont liées entre elles et aux molécules de H₂O par des liaisons hydrogène de type O—H \cdots O. Chaque H₂O participe avec ses deux hydrogènes et son oxygène alors que chaque ligand engage les hydrogènes des groupements acides COOH et les oxygènes des groupements COO⁻.

Partie expérimentale

Le complexe $[Cu(C_6H_8NO_6)_2], 2H_2O$ a été préparé en ajoutant une solution aqueuse de $C_6H_9NO_6$ à une solution de $CuSO_4,5H_2O$ en milieu méthanol selon le rapport molaire 2/1. Après agitation, le mélange réactionnel est mis dans un four à 373 K. Après quelques jours, des cristaux en forme de plaquettes et de couleur bleu clair apparaissent. Ils ont une taille suffisante pour une étude structurale.

Données cristallines

$[Cu(C_{6}H_{8}NO_{6})_{2}].2H_{2}O$ $M_{r} = 479,84$ Monoclinique $P2_{1}/c$ a = 6,879 (2) Å b=14,004(3)Å c = 9,504 (1) Å $\beta = 91,37 (2)^{\circ}$ $V = 915 (2) Å^{3}$ Z = 2 $D_{x} = 1,742 \text{ Mg m}^{-3}$	Mo $K\alpha$ radiation $\lambda = 0,71069$ Å Paramètres de la maille à l'aide de 25 réflexions $\theta = 11-15^{\circ}$ $\mu = 1,273$ mm ⁻¹ T = 293 (2) K Plaquette $0,25 \times 0,25 \times 0,09$ mm Bleu clair
Collection des données	
Diffractomètre CAD-4 Balayage $\omega/2\theta$ Correction d'absorption: empirique par balayage ψ (North, Phillips & Mathews, 1968) $T_{min} = 0.72, T_{max} = 0.92$	1445 réflexions avec $l > 2\sigma(l)$ $R_{int} = 0.022$ $\theta_{max} = 26.98^{\circ}$ $h = -8 \rightarrow 1$ $k = -17 \rightarrow 0$ $l = -12 \rightarrow 12$

2155 réflexions mesurées 1988 réflexions indépendantes

Affinement

Affinement à partir des F^2				
$R[F^2 > 2\sigma(F^2)] = 0.042$				
$wR(F^2) = 0,090$				
S = 1,093				
1988 réflexions				
173 paramètres				
Tous les paramètres des				
atomes d'hydrogène				
affinés				

1 réflexion de référence fréquence: 120 min variation d'intensité: 1,7%

 $w = 1/[\sigma^2(F_o^2) + (0,0263P)^2 + 1,0719P]$ où $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0,001$ $\Delta\rho_{max} = 0,334$ e Å⁻³ $\Delta\rho_{min} = -0,300$ e Å⁻³ Pas de correction d'extinction Facteurs de diffusion des *International Tables for Crystallography* (Tome C)

Tableau 1. Paramètres géométriques (Å, °)

Cu1—O1 ⁱ	1,954 (3)	N1C3	1,474 (4
Cu1—O1	1,954 (3)	N1-C5	1,486 (4
Cu1—N1 ⁱ	2,059 (3)	N1C1	1,489 (4
Cu1—N1	2,059 (3)	C1C2 ⁱ	1,513 (4
Cu1—O2	2,328 (2)	CI-HICI	0,97 (4)
Cu1—O2 ⁱ	2,328 (2)	C1—H2C1	0,93 (4)
01—C2	1,258 (4)	C3C4	1,512 (4
O2C4	1,206 (4)	C3—H1C3	0,90 (4)
O3—C4	1,301 (4)	C3—H2C3	0,95 (3)
O3—HO3	1,03 (4)	C5C6	1,523 (4
O4C6	1,187 (4)	C5—H1C5	1,00(3)
O5C6	1,324 (4)	C5—H2C5	0,88 (3)
O5—HO5	0,77 (5)	OW1-H1W1	0,95 (7)
O6—C2	1,243 (4)	OW1—H2W1	0,79 (7)
01 ⁱ Cu101	180,0	C3-N1-C1	112,2 (3)
Ol'—Cul—Nl	93,9(1)	C5-N1-C1	110,5 (3)
01-Cu1-N1'	86,1 (1)	C3-N1-Cu1	107,4 (2)
01'Cu1N1	86,1 (1)	C5-N1-Cu1	108,4 (2)
01Cu1N1	93,9 (1)	C1-N1-Cu1	105,9 (2)
NI'-Cu1-N1	180,0	N1-C1-C2'	113,5 (3)
Ol'—Cu1—O2	87,2(1)	06-C2-01	124,6 (3
O1Cu1O2	92,7 (1)	06—C2—C1	116,3 (3)
N1'-Cu1-O2	102,23 (9)	01—C2—C1'	119,1 (3)
N1-Cu1-O2	77,77 (9)	N1-C3-C4	112,2 (2)
O1'-Cu1-O2'	92,7 (1)	O2C4O3	124,5 (3)
O1Cu1O2'	87,2 (1)	O2C4C3	123,3 (3)
N1'-Cu1-O2'	77,77 (9)	O3C4C3	112,2 (3)
N1Cu1O2	102,23 (9)	N1-C5-C6	113,8 (3)
O2Cu1O2'	180,0	O4—C6—O5	124,9 (3)
C2O1Cu1	114,4 (2)	O4C6C5	126,9 (3)
C4—O2—Cu1	105,3 (2)	O5C6C5	108,2 (3)
C3—N1—C5	112,1 (2)		
Codo do sumátrios (i)	1	-	

Code de symétrie: (i) -x, 1 - y, -z.

La largeur de balayage est $(1,00 + 0,70\tan\theta)^\circ$. Les intensités ont été corrigées des facteurs de Lorentz-polarisation. La structure a été résolue par les méthodes directes (*SHELXS*86; Sheldrick, 1990) puis affinée par la méthode des moindres carrés (*SHELXL*93; Sheldrick, 1993).

Collection des données: CAD-4 EXPRESS (Enraf-Nonius, 1994). Affinement des paramètres de la maille: CAD-4 EXPRESS. Réduction des données: MolEN (Fair, 1990). Graphisme moléculaire: ORTEPII (Johnson, 1976). Logiciel utilisé pour préparer le matériel pour publication: SHELXL93.

Références

- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5,1/1,2. Enraf-Nonius, Delft, Les Pays-Bas.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, Les Pays-Bas.
- Johnson, C. K. (1976). ORTEPII. Rapport ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- Lumme, P. O., Knuuttila, H. & Lindell, E. (1996). Acta Cryst. C52, 51-56.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Université de Göttingen, Allemagne.
- Whitlow, S. H. (1973). Inorg. Chem. 12, 2286-2289.

Acta Cryst. (1998). C54, 199-201

Bis(di-2-pyridyl-*N*-amine)(propionato-*O*)copper(II) Nitrate

Sujittra Youngme, ^a Kamphone Chandavong, ^a Chaveng Pakawatchai, ^b Zhong-yuan Zhou^c and Hoong-Kun Fun^d

^aDepartment of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand, ^bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Thailand, ^cCrystal Structure Analysis Laboratory, Chengdu Branch, Academia Sinica, Sichuan 610041, People's Republic of China, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: hkfun@usm.my

(Received 27 June 1997; accepted 21 October 1997)

Abstract

The crystal structure of the title compound comprises $[Cu(C_3H_5O_2)(C_{10}H_9N_3)_2]^+$ cations and NO_3^- anions. The cation structure is intermediate between a distorted square-based pyramidal five-coordinate geometry with an additional long bond and an asymmetric *cis*-distorted octahedral geometry, both giving a $(4+1+1^*)$ -type coordination.

Comment

The crystal structures of the $[Cu^{II}(chelate)_2(OXO)]^+$ cations, where chelate is di-2-bipyridyl or 1,10-o-phenanthroline and OXO is ONO⁻, CH₃CO₂²⁻ or HCO₂⁻ are well characterized (Hathaway, 1984) as fluxional copper(II) stereochemistries (Fitzgerald *et al.*, 1981; Simmonds *et al.*, 1987). In order to extend this series to more flexible chelate nitrogen ligands, complexes with

Des documents complémentaires concernant cette structure peuvent être obtenus à partir des archives électroniques de l'UICr (Référence: MU1346). Les processus d'accès à ces archives est donné au dos de la couverture.